股票代码:870757
服务电话:400-089-8890
2024年4月20日文博圈联合森罗股份推出“金属文物病害分析与长期保存”文物保护线上公开课。此次直播公开课提供直播回放。
< 路径:扫描二维码→直播回放→金属文物病害分析与长期保存 >
下图中左上是云南李家山出土的青铜器。因为土壤地理环境的因素,导致青铜器表面结构非常疏松脆弱,造成青铜器掉渣,这是一种典型的病害特征。右图所示是山西出土的文物,它的裂隙有变大的趋势裂隙,这也导致整个青铜本体的脆弱、腐蚀。左下图它表面有一些蓝绿色小点,当保存环境潮湿时,这些小点会大量地产生。
下图所示的青铜鼎是典型的青铜病案例。在比较潮湿的环境下,局部产生大量的锈蚀,体积膨胀。如果处理保护不及时,对环境不进行控制,锈蚀会不断地产生并继续腐蚀青铜鼎的本体,造成非常重大的损害。
下图是青铜器表面的结构,它的腐蚀层是分层的,中间有孔洞,还有其他不同状态的锈蚀。这种锈蚀产物的凝结会加重青铜器本体的腐蚀。
脆弱青铜器表面易产生“有害锈”。要了解“有害锈”,了解青铜病害,在整个研究的过程中需要考虑以下六个问题:
青铜病是如何形成的?
为什么氯化铜会深藏在锈层的下面?
在腐蚀过程中,青铜病结构特征是怎样形成的?
青铜病的表现形式?如何检验?
青铜病的锈蚀机理?
保护处理方法对这种腐蚀的特殊性是否有效?如何评估?
我们对全国大概五六十家博物馆的文物库房及展厅进行了调研,许多染有“青铜病”的青铜文物,通过各种科学分析、实验、检测以及显微镜观察发现:
“青铜病”实际上是青铜器上的一种局部动态腐蚀过程;
“粉状锈”仅是青铜病的表露现象,而缝隙和小孔深处的电化学腐蚀才是青铜病的根源;
“青铜病”常分散或密集分布在青铜器表面,而孔口多数被腐蚀产物覆盖,少数呈开放式;
有的孔口是小而深的,有的孔穿透青铜器壁;
“青铜病”的锈蚀产物是“粉状锈”,常常是从顶部覆盖的矿化物裂缝中冒出来的;
下面左图所示青铜器表面只是局部有一些孔洞和化合物表面沉淀,但当环境相对湿度达到45%以上时,放置大概7~10天,青铜器局部产生很多绿色粉状锈蚀(如右图所示)。这种现象是非常典型的环境湿度控制不好,引发的青铜病害的现象。
下图是青铜器在湿度比较大的环境中,因锈蚀体积剧烈膨胀的现象,从很小的一个点往外冒。其原因在于青铜器出土前后环境变化,或者储藏环境湿度波动所造成的。
“粉状锈”是一种能够继续产生新的腐蚀,对青铜器长期保存有危害的腐蚀产物。
“粉状锈”主要成分是碱式氯化铜,有多种同分异构体,在文物上主要为氯铜矿和副氯铜矿。
采用xrd、激光拉曼、红外光谱等分析检测方法检测发现,文物上的碱式氯化铜有多种同分异构体,在不同的湿度、酸度条件下有一定的活性,而造成青铜器物的不稳定。
综上所述,总结如下:
“青铜病”,是一种正在进行的、动态的、循环腐蚀的过程;
下图是青铜孔蚀坑横截面示意图:
下面左图是一个典型地暴发“粉状锈”的青铜样品的锈蚀层剖面示意图,把它横切面切出来以后,里面的分层结构很复杂,右图也是一个典型的腐蚀层剖面示意图。它的基体层外是黑色的氧化铜,再上面一层就是含氯的腐蚀性结构。
综上所述,我们认为青铜的小孔腐蚀原理在一定程度可以解释“青铜病”的产生和发展的原因。
综合国内外的一些最新研究成果,我们认为“青铜病”具有小孔腐蚀、自催化作用等特征,危害很大。因此,我们认为针对青铜器小孔腐蚀的研究,可在理论和实践层面上提升对“青铜病”的认识,有利于找出更科学、更符合青铜文物的保护方法。
4“有害锈”的检测和鉴别方法
作为在青铜器表面形成“粉状锈”的主要组成物质——碱式氯化铜,有四种不同形态,分别是羟基铜矿、副氯铜矿、氯铜矿和斜氯铜矿。它们是同分异构体,虽然分子式相同,但分子结构不同。
从热力学的角度分析四者的热力学稳定性是不同的。羟基铜矿是最不稳定的锈蚀产物,在日常检测中极少见到;氯铜矿、副氯铜矿相对稳定,也有人将其分为活性与非活性锈蚀。
对于出土青铜器而言,“青铜病”的病灶大多位于锈垢层底下,没有冒出粉状锈时,一般不容易被发现。为了寻找“青铜病”的病灶分布规律,使用一定浓度的bta-h2o2试液去鉴别何种类型的锈层底下最可能有病灶。这种方法对于活性“粉状锈”的鉴别较为敏感,通过鉴别“粉状锈”的活性,为文物保护工作者选择保护处理方案提供重要判断依据。
下图青铜器物表面局部有大量的粉状青铜病害发生。当在青铜器表面涂抹一定浓度的bta-h2o2试液后,当涂抹试液处有大量的气泡冒出,且现象越剧烈,就说明这个局部的病灶处锈蚀越严重。当出现这种状况,要采取紧急保护处理措施,否则病害发展趋势非常快,整个青铜器会被腐蚀破坏。
通过大量调研和文献综合分析,影响馆藏青铜器保护的主要因素为:温湿度、光照、有害气体等。当青铜器处于温湿度波动大、有污染气体的环境中,发生病害的概率非常大。
采用失重法、电化学法、显微镜观察等测试方法,检测在一定温湿度和大气污染物存在下的腐蚀行为和规律,研究主控环境因素与腐蚀行为之间的关系。
环境因素对青铜材料的影响可以用函数形式(例如:剂量-反应曲线、各种相关数理统计模型等)来描述,其正确与否是与技术、科学文献和规范报告中的阈值参考值进行比较和验证。
如下图所示,通过测试不同温度、不同臭氧浓度下电极频率下降值,发现:随着温度的上升、臭氧浓度的增大,青铜材料腐蚀速率明显增大。
通过研究不同温度、不同二氧化硫浓度下电极频率的下降值,也得出了同样的结论,即:随着二氧化硫浓度的增大、温度上升,青铜材料腐蚀速率也呈现上升的趋势。
此外,研究了有机酸性气体对青铜材料腐蚀速率的影响,随着有机酸浓度上升腐蚀加速。
o3和so2均能加快青铜的腐蚀速率,且升高o3浓度、so2和温度会加重青铜的腐蚀。与so2相比,o3对青铜腐蚀影响更大;
青铜的腐蚀速率与o3浓度、so2浓度之间均呈幂函数关系;
那么,“温湿度变化、污染性气体、有机酸”三种环境因素,哪种在青铜器腐蚀过程中是最主要的因素?产生病害的风险最大呢?
采用熵权法和灰色关联分析法进行排序,通过matlab影响因子占比来计算过程。开展“环境因素与青铜材料腐蚀的关联”试验研究,研究内容如下:
1)关联度由大到小依次为:臭氧>二氧化硫>甲酸>乙酸>二氧化氮;
2)采用正交实验法,测试了不同温湿度、不同浓度污染性气体对青铜材料腐蚀的影响。考虑到环境温度、相对湿度会对反应速率等造成影响。因此,选择温度、相对湿度、臭氧、二氧化硫、甲酸作为青铜腐蚀的主要影响因素进行实验。
3)通过将青铜标准模拟试片暴露在不同环境下三个月,观察各试片实际腐蚀状况、腐蚀速率的变化,并进行对比。
按照正交实验推导的腐蚀公式模型,进一步推导的腐蚀因子占比的关联模型。应用该模型预测环境因素对青铜腐蚀概率,模型预测值与实验结果有较高的吻合度,相对误差精度5%以内。这也表明,环境因素与青铜材料腐蚀速率关联性模型是比较成功的。
环境因素与青铜材料腐蚀速率的关联性分析成果:
(1)运用适宜的手段对博物馆环境进行有效检测。在博物馆环境监测技术系统中,包括了无线传感监测系统、实验室采样分析技术和定期便携式仪器检测。
(2)对青铜文物储藏和展览材料进行评估筛选。用于博物馆藏、展的设施制作材料及装饰材料所散发的污染物,是造成当前文物保存环境质量差、引发文物劣化的最主要因素之一,必须从源头上控制文物微环境的质量。
(3)对文物保存微环境实施平稳、净化调控。为营造“稳定、洁净”的馆藏文物保存环境,需要使用高效、对文物友好的各种微环境调控功能材料——调湿剂、(低浓度污染物)吸附剂、除氧剂和微动力调控设施——电子调试器、专用空气净化器、小型充氮系统等。
(1)普通青铜文物建议保存的环境:温度20℃±2℃;相对湿度35%±5%;
(8)amt复合配方法等。
处理“有害锈”以后,接下来必须经过另外两个重要的处理阶段,第一个是缓蚀处理;第二个是封护处理。
(1)缓蚀材料:缓蚀剂bta、amt、pmta、mbo、mbi等;
(2)封护材料:传统有机材料(微晶石蜡、防锈油脂等)、合成有机高分子材料、有机-无机杂化材料等;
(3)超疏水材料。
在青铜表面局部构建一个超疏水区域后,水膜不容易形成,这样青铜器局部有害锈的继续发生概率会大大减弱,从而对青铜器起到一个非常长久和稳定的保护作用。
青铜文物保护的发展未来主要是在环境、保护材料、研究方法方面。比如,在环境研究方面,借助大数据分析、建模,通过一些风险预判,为博物馆的藏品风险管理奠定技术基础;在保护材料方面,使用其他行业的改性材料进行青铜文物保护;在研究方法方面,甚至可以应用ai技术对大量监测数据进行分析、预测和判断。